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Abstract

Empirical Bayes point estimates of true score may be Obtained if the

distribution of observed -score for afixed examinee is approximated in

bone of SO./end ways by a well-known compound biriomial model. pe,Bayes

estimates of.true score may expressed in term's of the obierved score,

distributiOn and the disbution of a hypothetical binomial test. The

latter distribution is Bound by use of the compound binomial approxima7

tion tormuia and'from relationships which exist between Bayles estimates

and unconditional probabilities of observed score. Empirical Bayea

point estimates are obtained by use of the sample observed score

distribution.
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o

ecently ;the rpirical Hayes approach has been applied to certain.

.
-' ., .

.

problems in mentaj teVt theory. Empirical Bayes procedires are based
4

,-

.

upon the Bayes assumption of priordistribUtiOns,/ 1:Lit utilize empirical

.informatiorC:in lieu o'pmaking speCific diAributional assumptions.
Seveai

. . 4. _.

mental test theory applications have conceptualized, the distribution of

true scores as a prior distribution. These have included methods for

the estimation Of the true score diStribution LLord, 1969] and methods

for 'obtaining point esti tes of true score [Meredith, 1971; Wredith &

Kearns, 1973]. Both of these approaches `have used "stronetrue score

theory" assumptions [cf. Lord & Novick, 1968, Part 6] which specify,theh

form of fihe conditional distributipn of observed scores for a fixed true

score, i.e., the error or propen4ty distribution for an individual.

Point estimation methods have concentrated upon the development of

estimates which are asymptotically optimal, i.e.; estimates whlcil ap-

pf.oach a Bayes point estimator as the sample size becomes increasingly

Large. these estimate's require essentially no a priori assumptions about

the true score distribution!(occasionally some very general assumptions are

made). The Bayes point estimators are highly advantageous in that they

minimize the overall expeCtea squared error loss. Tkis implies that the

Pr ented at the 1974 Spring Meeting of the Psychometric Society,

Stanford iversity, March'28.419, 1974.

I am ndebted to Frederic M. Lord for a critical reading of this

paper and t Dorothy T. Thayer for implementing the necessary computer

programs.
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Bayes point estimates are as reliable,as any other type of score cf.

Meredith,& Kearns, 1973, Section VI]. The speed faith which the empirical

BaYes.point estimator will' approach the Bayes point estimator will depend

upon various characteristics of the propensity and true_.*co1/4.?e listributiong,

(

.but, in general, the saniples must be reasoriably large to provide estimates...

,

which are superiot to the maxinyam likelihood,esimates (Observed score).

An alternative approach ha S involved various "smoothing" procedures which

have been shown to reduce overall expected .loss considerably for relatively

small samples, and are generally superior to the use (4, observed scores,

but are not asymptotically optimal.

The point estimation-vrobIem has been explored for assumed Raissein

and binomial error distributions% This study will extend this approach

to the compound binomial error distribution used by Lots' (1965,,.l969

which is applicable to a fairly large class of nonspeeded; binary item. tests.

Let XN the random variable; takihg on particular valdes x

.which reptesent scores on an N itegi tept. Let T be the proportion

correct true scorenandom'variable with particular values T (0 < T <.1 ).

N
If g(T) is the distribution of true scores; and f(xIT) is the error

distribution, then the regression of P on X is given by

1 J Tf(XIT)g(T)dT

'(1) e(TIx) I Th,o-lx,d7
01

0 )( f(XIT)d(T)d'c

I*1
" 0
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I

where h(Tlx). is
the&osterlbr" distribution of T , given x .

'ff it it

poss4ble to' calculate (1), this "posterior" mean is equivalent 'to the Byes

:point estimator of / T wh3 ich minimizes the overall
expected sOared error,

loss jtviaritz, 1970, - p. 11.

"If an indiOoduAl's respbnses to the N items are experime tally

-

r:...i /

g
-

independent, with a vector of probabilities of passing 0 . 14 1. ( g . 1,

...,N ), ther. f(x1T) is a compound binomial distribdtibn, where

N

T =
1

T NO
g

. This distribution depends upon the vector 0 but may be

expressed in'terms of T as a finite series [Lord, 1969]

(2) PN(xi4) (

p
a

where

N-x N N,
T) V2kw,T)U2(X,T

N
2

. +
3

v
3 3

(x,T) [ v4Q,T) c,A v2(41,-r)]

.

(c1),T) N2v2(0,t)v3(421T)1c5(x,1')

+' (N .terms)

N

V (0 T) E (0 -

r N g.1 g

and

x T) = (.11g4

v=0

where

r

v
VIT)
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)(1 )N-11X 0 .< X < N

PN( xIT) =
0 6therwise

. .

,

Lord has studied approximations which retain onlyAe first few terms,of

(2) ancliapproximate the V
r
(4),T) by functions of e,g;

V2(41,T)
2k

V2(T) T(1 - T) ,

Where. k is a constant which must be estimated. We shall'consider here

the Approximation obtained by retaining only the first two terms. If

solely the first term
is(retained, (2) reduces to the binomial error

model, Aich must be discussed first.

THE BINOMIAL ERROR MODEL.'

-

When f(11T) is binomial (N,T) (cf. Robbins, 1975), equation (1)

becomes

eN(T.IN = x
x + 1

p
N+1

(x + 1)

N + 1 py(A)
'1r

where the values of pN(x) are the probabilities of the unconditional

distribution of observed scores. With information from only N items,

0 this regression is Indeterminate (Lord & Novick, 1968, p. 5140 since the

distributiOn represented by the values of pN4.1(x 1) is unknown.

Hayes point estimates of T are obtained by considering outcomes for

only the first N r I items, i.e.,



(5)

A

4I
X

%-i(T2XN-1 x)
Y4'

-5-

+ 1 PN(x

N' pN_1(x)

If the items are truly equivalent, then any item may be deleted to obtain

such.'an estimate. The substitution of sample proportions in (5) for the

values of pN
(x + l)- and p

N-1
(x) gives one an asymptotically optimal

empirical Bayes estimator.
)N . °

Meredith and Kearns'[1973] have developed a procedure for assigning'

Bayes point estimates
to,individuals who obtain a given score on the N

item .test` This depends upon the following result for the binomial

distribution [cf.' Lord & Novick, 1968, p: 365, Corollary]:
a

x

*(6) x.- 1.1xN = x] = 5

xIxN x] N x

This condi'tional'diatribution is
independent of the parameter and

hence is valid for the entire population of individuals. If we tset XN = x

0

but treat X_
11-1

as a random variable which can assume only the two values

x and x - 1 , then the expected value of IxN._ 1) conditional

upon = x is

(7) eN_1(T) = eN eN_1(T = x or x

e

1)1xN =

N EN -].(T
= x 1)

N x
F (T IXN -114-1 N-1

This is a population estimate which may be assigned to an individual on

0

the badiS of his score on the entire N, item test. This estimate is

N

based upon information from ox4y N items
.

It is not to be identified

O
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with the regression estima pf (4), which requires informationfrom .N + 1

items in ordertto be dete ed. The estimate of(7) contains no more

information than the regression estimates of (5).. It represents a

probabilistic assignment, based upon the distribution of (6), to one of

twodlssible outcomes on an N - 1 item test obtained by aeleting as

item. Meredith and Kearns [1973] used this result to obtain the estimate

i(xN = x) ( ) E el14121(T)Ix]

4

where the superscript (i) indicates that item i has been deleted. This

equation combines results from all possible item deleted subtests and re-

duces the overall expected loss when the. F(TNA x) are estimated

empirically. This assignment proceduremay be 'extended to outcome on an

N + 1 item test, i.e.,

(8) eNfi[ ev_i(T) Ix] . .e.N4.1[ IxN21 ..x,. x 1, or x - 2) ,IXN+1.) X]

a

x* eil[eN_I(T)IxN = x]

_+
( N 4- 1 -

N + 1 )eN[eN-1(T) IxN x]

Again, this estimate contains no more information than (7) or (5),

With increasing N , there is a Corresponding increase in the -

number of moments ( N ) of the true score distribution which may be ob-

tained from the observed score distribution [Lord & Novick, 1968, p. 521].

9
q
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The true score distribution can never be uniquely determined, but,

,

increasing N , the class of possible true store distributions becomes. ,.

increasingly restricted. In addition, the relative amount of information

sacrificed by, using the estimate of '(5) decreases. In this context, the

estimate of (7) may be seen as apprOpriate for X_
N
. x, but based upon

,

an inadequate amount of informatiOn about the true score distribution.

The amount of information needed for the regression in (4!) is.equivalent

to that obtained with N + 1. items. Since the asst went procedure of j

(7) may be extended to -Hayes estimates obtained fewer items as in.

)(8)), it becOmes possible to observe the way in which, for fixed X
n

x ,

' these assigned estimates cAnge as a function of increasing N If this.

functional relation is sufficiently regular, it should be possible to

fit'a eurve.for several 'values < N and extrapolate to N 40 1 . This

extrapolated estimate should by a close approximation to thenanidentifiable

estimate of (4). sts`

THE COMPOUND P'INOMIAL ERROR MODEL

The two term approximation of (2) using the additiona4 approximation

of (3) may be written, in terms of T as

(9)
% +1/ 2 4.%

Px(xIT) = pN(xIT) + kT(1 - T) E k-i)v k Apla:2kx vi.T)

v.0

.

Lord (1965, 1969) suggests pbtaining k such that the correlation 11etween

true and observed .,core is equal to the square root of the Nuder-Richardson
.

formula-20 reliability.. This value of k is

10



S./

s

(10) k=

-8-

N2 (N - 1)0
2

2
2[ (N - px) - aX

- Na g2 ]

4

2
where

µX
and .ax are the mean and variance of XN , and a

2
is the

variance of the item difficulties. The unconditional distribution of XN

is, using (9),,

1

(11) 4 P
N
(x) .)( P

N
(x1T)g(T)dt

0

2

7 pli(x) k (-1)v (

v +1)
- I)

N - x v - 1) 7 v 4 1)
N N

+1 2

v=0

From the detinttion following (2), pN_ (x vIT) = 0 unless 0 < x - v < N -.2 .

Consequently, in equation (11), p
N
(x - V 1 is equal to zero under

the same ,conditions, 4.e. when xi< v or, x > N -24v . With the

value of k obtained from (10, equation (11) represents N + 1

equations in the N 4 1 unknowns, p
N
(x),.

Let

E,T(T ix) eNCT I =

for the compound binomial test, and

ell(Tlx) = ell(TIXN = x)

for the hypothetical binomial error test whose distribftion is represented

by the values of p N (x) ...Then the Bayes.point
estimate of T ,obtained

.by substitution of (9) into (1), is



r

I TP XIT)iiTidT

(12) EN[Tlx] = °1

pN(x1r)g(T)dr

0

t

[ X + 1
N + 1 PN+1(x 1)

O

2 tv+1 2
k E (-1) ( )

1.73

(x - v.+ 2)(x - v + 1)(N x + v - 1)

(N + 1)N(N - 1)
p
N+1

(x - v 2))]

2

. pN(x) E 2 )

11%7.0

(x - v + - x
NN- 1)

Dividing through by pN(x) and letting

A(x) 1+ 2k IN x
N N - 1)

v 1)\pN(x - v + 1)]-1

B(x) k
+ 1 (N'- 1) PN(x 1)
N N - pN(x),

p (x -

1)C(X) c k (X 1)(N X 1)
L

N

N(N - 11 P (?c)

we may write (12) as

(13) ENITlx]

A(x)FN (Tlx)- B(x)e (Tlx + - 0(x)e, (Tlx - 1)

A(x) - B(x) - C(x)
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The. values of p
N
(x) may be '.obtained ,by solution of the,set of N + 1

-,
. .

. ,

-.. ,

..,

equation's given by (11) 4. . *
r . k

-

, , - .

. d
.

The prqaedures.outlined in the previous section may be used, tp estimate

eN(Tix)i with the fylowIng necessary'modificaticth. The probabilities
,

p
N I

(X) used in (5) can be obtained, in:the case of a binothial error-
, ,

.

r

distribution, by deleting any item and observing tpe distribution.

..=

Alternatively equaticiri (6) may be used to'write

`

N x + 1

PN-1(x)' 1"--.PN(X) *ok P (x 1)

This equation mayye used in the case of the hypothetical valuis Of

pi(x) 'determined by (11). _The extrapolated.estimates of eN(Tlx) may

- be found by the indicte4 procedure'and substituted into (13). , .

-.

If, as is ths usual case,,, we have only sample estimates of the

.

P
N

,(x) the estimation procedure must be examined wi;with regaf4to sampling

....,.. 1.

variability and its effect upon the overall expectedesquared-error loss,
.. ,/

.
.

which is a random variable over repeated sampling [of.. Maritz 1970].

This is he empirical Bayes situation which we shall consider next.
. ,

EMPIRICAL BAYES ESTIMATES

Simple empirical Bayes_estimates may be obtained for the regression

. of (13) by substitution of sample proportions, PN(x) ,'.for the PN(x)

of equation (11). Howeysr, these are not likely be the best estimates

in terms'of minimizing the overall expe4ed squared error loss [cf.

Marilt 1970, pp. 17-18] unless sufficiently large samples are used.

13
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Several empirical Bayes estimators have been yroposed which can

minimize this.losd for-sMall or moderate samples and ,are applicable -V?

the binomial error model [Lemon &-Krutchtoff11969;.Griffin'& Krutchkoff

'1971; Copas, 1972; 'Bennett. & Martz, 10?; Meredith & Kearns, 1973]

However, while these procedUreS generally have.deSirable small- sample

properties, they.are not'usuallythe best procedures for extremely, large

sample's, ile., they are not asymptotically.optiAal.
'However, two of

. -

these methods [Lemon &Krutchkoff 1969; Bennett & Martz, 1972]

approach asymptotic optimality as N am, and are approximations of (4)

rather than (5). The advantage of these tuio smoothing procedures is thereL

,fore a function of the size of the sample relative to the value of N . A

lu

particular method may be advantageous depending upon the articular char-

,.

acteristics of the diNribution of "rue scores.; All ot":these procedures

may be used to estimate eN(Tlx) from the 15 (x) obtained from (11). )

additional empirical consideration is the stability of the ratios

p
N
(x + 1) p(x - 1)

] and- [ -131:i.(x) needed foL B(x)i and C(x) . If these

ratios are estimated by substitution of the values of fyx) , they are

likely to increase sampling error unless the sample is quitft large.

Lord [1959] has shown that the recurrence relation

N-x+1pN(x - 1)

(.15)

(T Ix) = 1 e ] - 10

N x p (x, N
(

N

I

holds for x in the population. This represents Di.tequations

in N +.1 unknown and reflects the indeterminacy discussed in terms of

equation (4). For sufficiently large samples, we should require that the

.14
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,estimates of e
N
(Tlx) satisfy the constraints. represented by (15).

Alternatively, equation (15) provides a method for estimating . 43(X)

and C(x) if estimates of eN(Tlx) are available, i.e.,

(16),

- v
p
N
(x + 1). xN

SNIT lx)-
p
N

x + 1(x) .-- ( )[
N' 1 - a.....(T lx:-6,1)

,

and

pN(x- 1) _
1 - e(Tix)

(17) N -.x + 1 e -
N

APPLICATIONS

An,example is taken from Meredith and

a sample of 7718 respondents on an 11-item

Kearns [1973]. The data represent

subtest selected from items of the

School and C011ege Ability Teit. The items were selected to.have approxi-

mately equal item difficulties., The computed/value of 0.2_
A

was .000859.

Table 1 gives results for the binomial error model assumption. The

assigned estimate's1 corresponding to (7) are shown along with extensions--

(as in (8)) based upon information from IN* items' ( N*< N ). In addition,

the extrapolated estimates of the regression function are given. The

extrapolated estimate* for this and the folldwing example were obtained by

fitting a quadratic curve to the "last" four points,. for N*

equal to N - 1 , N -.2 , N - 3 ,.and N 4 . Table 2 shows' the re-

sults for the compound binomial error model using the same data. The
t

.

. .;

assigned and eXtrapolated estimates fbr the hypothetical binomial error

distribution obtained from (11) are shoWn. These values are also presented

in Figure 1. The empirical Bayes estimates corresponding to (13) are

15
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Figure: 1

Data from Meredith and Kearns [1973]
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shotan for both (a) substitution of the values of DI\Tx) and (b) us

.

(16) and (17) to estimate B(x) and C(x) .
Since the items art so

similar in difficulty, it is not .sUrprising that these estimates cor-

.

respond Very closely to those'in Table 1.
.

A seconeexample from Lord.[1965] uses one of, the 'sixteen dis-
.,

- 2

trfbutions'analyzed in that study ( N = 25 , a . .035 , k = 2.1 ,

sample size = 1000). Table 3 gives the results of'apPlying both the com-

pound binomial and binomial models. For all estimates there is a gener4

lack of monotonicity which reflects the smaller sample size (and larger/

number of items). In addition, the estimates appear quite erratic.where

the frequencies are small (near x = 0 ). This suggests that a smoothing--

vo, procedure should be used. Note that the results of the binomial and

compound binomial are similar, although both are jagged.,,

. The- smoothing proce4re of Lemont and Krutchkoff [1969] was applied

using the 131\1(x) of Table 3.7 This procedure essentially obtains estimate's

f

.

by smoothing the ,13N(x) . The estimates appropriate for the binomial .

J

distribution. are

n
jx+1[1. 1N-x

L=0 i

n
E [Ti]x[1
i=0

p

Itherei=111ref"st06summation
over the sample le arid ir

" 1
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some estimate of true score for individual i Following Leton and/

Nx4

Kiiatchkoff, thg initial .estimate of Ti Is Titc, and an iterated smoothed.'

estimateisobtainedbysettingT.equal
to the initial smoothed esti-s-,

mate,q(Tlx.). .The, iterated smoothedestimates are shown in Table 4 albng

with the corresponding compound binomi,g1 estimates using (16),and (17).

Theseestimas appear quite 'smooth and exhibit monotOnicity throughout

the range of x
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Table

Smopthed Estimates

VT ix) E*(Tlx)
N

ri,l, 0

4l -
.218

.235
.192
.215

2 .2514 .236

3 .273 .258

4- N

c"-
.294 .281

5
6

( t
4 ;

.315

.338
.303
.327

7 .362 .351

8 .388 .378

9 .416 .408

10 .446 .439

11, .477
.471

12 (508 .5014

13 539 .537

114
.571 .569

15 .602 .6021/4"

16 .6314 .635

, 17 t .666 .669

18 \ .698 .702

41.'. .728 .7314

20 -

21 ,'

757
.783

.763
790

22 -

, .807 .815

C
23
24

.832
4360

.8141
.870

25 ?i .891 .902
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